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Physics 110B, Spring 2004 (Strovink)

These exercises should help to reinforce your understanding of component notation, repeated indices,
and the transformation properties of vectors and tensors in spacetime:

6.
Consider the Levi-Civita density εijk ≡ 1 (ijk =
even permutation of 123); ≡ −1 (odd permuta-
tion of 123); ≡ 0 (otherwise). It is found, for
example, in the cross product

(�a ×�b)i = εijkajbk .

Note that summation over the repeated indices
j and k is implied; their domain is 1 ≤ j, k ≤ 3.
(a.)
Show that

εijkεklm = δilδjm − δimδjl ,

where δ is the Kronecker delta function (whose
elements are those of the unit matrix).
(b.)
The determinant of a 3 × 3 matrix is given by

det A ∝ εijkAilAjmAknεlmn .

By considering the number of nonzero terms on
the rhs, and comparing it to the number of
terms you would have expected for a 3×3 deter-
minant, deduce the constant of proportionality.
Express it in terms of a factorial.
(c.)
Guessing the explicit constant of proportional-
ity, write a similar equation for the determinant
of a 4 × 4 matrix. How should εijkl be defined?

7.
Griffiths Problem 12.55. Don’t get fooled by the
typo – he means “∂µ ≡ ∂/∂xµ”.

8.
An object aµ is a (contravariant) four-vector
if it transforms (between frames as defined in
Short Course in Special Relativity (scsr) Fig. 2)
according to

a′µ = Λµ
νaν ,

where Λ is the (symmetric) 4 × 4 Lorentz trans-
formation matrix. (Conventionally, the first

(superscript) index labels the row and the sec-
ond (subscript) index labels the column, but
this makes no difference for a symmetric ma-
trix.) Covariant four-vectors instead transform
according to

a′
µ = aν(Λ−1)ν

µ

(otherwise the scalar product aµaµ = a′
µa′µ

would not remain invariant for different Lorentz
frames). Consider now an (arbitrary) four-tensor
Hµν . In frame S, Hµν contracts with covariant
four-vector aν to yield contravariant four-vector
bµ, according to

bµ = Hµνaν .

In the frame S ′, requiring Hµν to satisfy the
transformation properties of a four-tensor, we
define H ′µν so that

b′µ = H ′µνa′
ν .

Prove that

H ′µν = Λµ
ρΛ

ν
σHρσ .

This defines the Lorentz transformation property
of a four-tensor.

9. Consider the antisymmetric electromagnetic
field strength tensor

Fµν ≡ ∂µAν − ∂νAµ ,

where both ∂µ and Aµ are (contravariant) four-
vectors. Prove that Fµν is a four-tensor, i.e. it
transforms according to the result of Problem 8.
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